higher numerical ranges of matrix polynomials
Authors
abstract
let $p(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. in this paper, some algebraic and geometrical properties of the $k$-numerical range of $p(lambda)$ are investigated. in particular, the relationship between the $k$-numerical range of $p(lambda)$ and the $k$-numerical range of its companion linearization is stated. moreover, the $k$-numerical range of the basic $a$-factor block circulant matrix, which is the block companion matrix of the matrix polynomial $p(lambda) = lambda ^m i_n - a$, is studied.
similar resources
Higher numerical ranges of matrix polynomials
Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...
full textHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
full textGeneralized numerical ranges of matrix polynomials
In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.
full textgeneralized numerical ranges of matrix polynomials
in this paper, we introduce the notions of c-numerical range and c-spectrum of matrix polynomials. some algebraic and geometrical properties are investigated. we also study the relationship between the c-numerical range of a matrix polynomial and the joint c-numerical range of its coefficients.
full textHigher Rank Numerical Ranges of Normal Matrices
The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A ∈ Mn has eigenvalues a1, . . . , an, then its higher rank numerical range Λk(A) is the intersection of convex polygons with vertices aj1 , . . . , ajn−k+1 , where 1 ≤ j1 < · · · < jn−k+1 ≤ n. In this paper, it is shown that ...
full textHigher-rank Numerical Ranges and Compression Problems
We consider higher-rank versions of the standard numerical range for matrices. A central motivation for this investigation comes from quantum error correction. We develop the basic structure theory for the higher-rank numerical ranges, and give a complete description in the Hermitian case. We also consider associated projection compression problems.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 41
issue Issue 7 (Special Issue) 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023